В стиральной машине много пены что делать


в стиральной машине много пены что делать Значительная доля материала, касающегося производных и исследования функций, традиционно относится к школьной программе, и данная статья не является исключением из правила. Сегодня мы потренируемся в нахождении нулей и интервалов знакопостоянства функции, а также подробно разберём метод интервалов, который можно сравнить с надёжной арматурой в стенах рассматриваемой темы. Если же проект вашего здания находится на стадии котлована, пожалуйста, начните с вводного урока о графиках функций. Кроме того, желательно ознакомиться со статьями Область определения функции, Асимптоты графика, и, по существу, информация этой странички – логическое продолжение. Материал, естественно, будет полезен и старшеклассникам.

Открываем карты:

Что такое нули функции и что такое интервалы знакопостоянства функции?

Рассмотрим некоторую функцию .

1) Точки, в которых график  пересекает ось , называют нулями функции. Чтобы найти нули функции нужно решить уравнение , то есть найти те значения «икс», при которых функция обращается в ноль. В следующем условном примере нули функции  обозначены красными точками:
Нули функции и интервалы знакопостоянства функции
Очевидно, что . Заметьте, что точка  не является нулём функции, поскольку не входит в её область определения.

2) Интервал знакопостоянства – это интервал, в каждой точке которого функция положительна либо отрицательна.

В нашем случае функция положительна на интервалах , то есть для любого значения «икс» любого из перечисленных интервалов справедливо строгое неравенство . Или совсем просто – график функции на таких интервалах расположен ВЫШЕ оси абсцисс.

На интервалах  функция отрицательна, то есть любому значению «икс», принадлежащему этим интервалам соответствует строгое неравенство , и график функции расположен НИЖЕ оси .

Компактная запись перечисленных фактов выглядит так:
, если ;
, если .
Строки можно переставить местами, это не имеет принципиального значения, лично я привык сначала указывать интервалы, на которых функция положительна.

Что можно сказать об интервале ? Только то, что функция не определена на данном интервале, и, разумеется, о знакопостоянстве речи не идёт вообще.

Примечание: в математике более широким является термин «промежуток», который включает в себя не только интервал, но и полуинтервал либо отрезок. Полуинтервалы и отрезки знакопостоянства часто встречаются у кусочно-заданных функций. В частности, если на вышеуказанном чертеже «закрасить» точку с абсциссой , то получим промежуток (в данном случае – полуинтервал) знакопостоянства . Однако далее будут рассматриваться «обычные» функции, обладающие только интервалами знакопостоянства, поэтому в термине «промежуток знакопостоянства» нет особой нужды.

Как найти интервалы знакопостоянства функции?

Алгоритм метода интервалов прост и бесхитростен:

1) Находим область определения функции.

2) Находим нули функции (точки пересечения графика с осью абсцисс).

3) В большинстве заданий потребуется чертёж. Чертим ось  и откладываем на ней точки разрыва (если они есть), а также нули функции (если они есть). Определяем знаки функции на интервалах, которые входят в область определения.

Пункты можете законспектировать, впрочем, алгоритм очень быстро запомнит даже полный чайник. Тут всё прозрачно и логично.

Начнём с распространённой квадратичной функции:

Пример 1

Найти интервалы знакопостоянства функции.

Решение:

1) Функция определена и непрерывна на всей числовой прямой. Таким образом, точки разрыва и «нехорошие» промежутки отсутствуют.

2) Найдём нули функции. Для этого нужно решить уравнение . В данном случае:

Дискриминант положителен, значит, уравнение имеет два действительных корня:

3) Откладываем все найденные точки на числовой оси:
Нули функции располагаются на оси OX
В статье Область определения функции я выполнял подобные чертежи схематически, но сейчас для бОльшей наглядности изложения буду их масштабировать (за исключением клинических случаев). На том же уроке мы узнали, как выяснить знаки функции на интервалах – можно проанализировать расположение параболы. В данном случае ветви параболы направлены вверх, следовательно, на интервалах  функция будет положительна: . Попа параболы сидит на интервале  ниже оси абсцисс, и функция здесь отрицательна: .

Хорошо, параболу многие читатели представляют. Но что делать, если функция более сложная? Например, .  Заметная часть аудитории уже затруднится сказать, как принципиально выглядит график данной функции. И это, так скажем, ещё только минимальное усложнение.

Однако и в простых и в сложных случаях работает универсальный способ:

Рассмотрим функцию  непрерывную на некотором интервале , график которой не пересекает ось  на этом интервале. Тогда:

– если функция  положительна в какой-либо точке интервала , то она положительна и ВО ВСЕХ точках данного интервала;

– если функция  отрицательна в какой-либо точке интервала , то она отрицательна и ВО ВСЕХ точках данного интервала.

Включите немного воображения: если на интервале нет точек разрыва, и график не пересекает ось абсцисс, то он не может по мановению волшебной палочки перескочить из нижней полуплоскости в верхнюю полуплоскость (или наоборот). Поэтому знак функции на таком интервале легко определить по одной-единственной точке.

Проведём небольшой эксперимент. Представьте, что вы совсем не знаете, как выглядит график функции  и вам необходимо найти её интервалы знакопостоянства (кстати, если действительно не знаете, таки начертите многострадальную примадонну =)).

1) Берём произвольную точку интервала . С вычислительной точки зрения проще всего взять . Подставляем её в нашу функцию:

Следовательно, функция положительна и в каждой точке интервала .

2) Берём произвольную точку интервала , здесь по удобству вне конкуренции ноль. Снова выполняем подстановку:

А, значит, функция отрицательна и в каждой точке интервала .

3) И, наконец, обрабатываем наиболее простую точку интервала :

Поэтому функция положительна в каждой точке интервала .

Выполненные подстановки, вычисления почти всегда нетрудно выполнить устно, но в крайнем случае существует и черновик.

Фиксируем полученные результаты на числовой оси:
Интервалы знакопостоянства функции
Да, вы не имеете никаких представлений о параболе, но совершенно точно можете сказать, что на интервалах  график функции   расположен ВЫШЕ оси , а на интервале  – НИЖЕ данной оси.

Ответ:
, если ;
, если .

Точно так же решается целый спектр задач-«сателлитов», вот некоторые из них:

Решить квадратичное неравенство .

Проводим аналогичные действия и даём ответ .

Решить квадратичное неравенство .

Проводим аналогичные действия и даём ответ .

Найти область определения функции .

Проводим аналогичные действия, даём ответ .

И т.п.

Метод интервалов работает в самых примитивных случаях, например, для функции . Здесь прямая пересекает ось абсцисс в точке , при этом слева от данной точки  (график ниже оси ), а справа  (график выше оси ). Тем не менее, для тех, кто в танке, задача разрешима и методом интервалов.

Может ли функция быть положительно или отрицательной на всей числовой прямой? Конечно, в статье Область определения функции мы рассмотрели типовые примеры. В частности выяснили, что  (парабола, полностью лежащая в верхней полуплоскости). Метод интервалов проходит и тут! Рассматриваем единственный интервал , берём из него самую удобную точку  и выполняем подстановку: . А значит, функция положительна и в каждой точке интервала .

Перейдём к кубическим многочленам:

Пример 2

Найти интервалы знакопостоянства функции.

Решение: снова придерживаемся алгоритма:

1) Функция определена на всей числовой прямой.

2) Найдём нули функции, то есть решим уравнение . Для этого выполним разложение на множители:

Таким образом, нули функции: .

3) Откладываем найденные значения на числовой прямой:
Откладываем на оси абсцисс нули функции
Теперь в каждом из четырёх полученных интервалов берём наиболее простую точку и находим значения функции в данных точках:

Таким образом:
Определяем знаки функции методом интервалов
Ответ:
, если ;
, если .

Вы можете не знать, как выглядит график функции , но уже, по крайне мере, понятно, где он выше оси , а где ниже.

Кубическая функция настолько распространена, что не удержусь от полного чертежа «молнии»:
График кубического многочлена

Казалось бы, решение можно упростить: взять левый интервал , выяснить, что на нём функция отрицательна, а дальше знаки будут чередоваться – «плюс», «минус», «плюс». Знакочередование бывает часто, но…

ЗНАКИ ЧЕРЕДУЮТСЯ ДАЛЕКО НЕ ВСЕГДА

Поэтому не ленимся – ТЕРПЕЛИВО рассматриваем КАЖДЫЙ интервал: из КАЖДОГО  интервала берём наиболее выгодную точку и выясняем знак функции в данной точке.

Вот простой пример, когда интервала два, но знакочередования нет: . Экспонента всегда положительна , квадрат неотрицателен , поэтому вся функция неотрицательна: , очевидно, достигая нуля в единственной точке . Такого решения будет вполне достаточно. Не обязательно чертить координатную ось! Обратите внимание, здесь есть тонкость при записи ответа:
, если .
То есть, функция положительна везде, кроме точки ноль.

Но формально можно использовать метод интервалов, который приведёт нас к такому же результату:
Функция неотрицательна на всей числовой прямой
Если честно, не помню, как выглядит чертёж, однако совершенно точно можно сказать, что график данной функции лежит в верхней полуплоскости и касается оси абсцисс в точке .

Или парабола, касающаяся оси, например: . Такая же история. Кстати, если вы внимательно изучили геометрические преобразования графиков, то сразу поймёте, как расположена данная парабола.

Следует отметить, что ситуация касания графика оси не единственна, в ряде случаев  функция не меняет знак при переходе через точку разрыва. Хороший пример встретился в статье Непрерывность функции: .

Пример 3

Найти интервалы знакопостоянства функции.

Это пример для самостоятельного решения. После того, как определите знаки на интервалах, попытайтесь представить, как выглядит данная «молния». Примерный образец чистового оформления задания в конце урока.

Функции с многочленами встречаются очень часто, поэтому имеет смысл рассмотреть ещё пару экземпляров:

Пример 4

Найти интервалы знакопостоянства функции.

Решение:

1) Функция определена на всей числовой прямой.

2) Находим нули функции:

Таким образом, нули функции: .

3) Откладываем данные значения на оси абсцисс:
Нули многочлена 4-ой степени
Определим знаки функции на полученных интервалах:

Таким образом:
Знаки на интервалах не обязаны чередоваться
Ответ:
, если ;
, если .

Читатели с высоким и средним уровнем подготовки могут укоротить процесс решения, используя чётность/нечётность функций, чайникам же рекомендую не торопиться и тщательно прорабатывать каждый пункт решения.

Функция-многочлен 4-й степени тоже достойна полного графика:
График многочлена четвёртой степени

Собрат для самостоятельного решения:

Пример 5

Найти интервалы знакопостоянства функции.

В ходе выполнения задания потребуется решить так называемое биквадратное уравнение, которое также рассматривается в школьном курсе математики. В данном примере необходимо провести замену , разобраться с уравнением , найти корни  и на финише из равенств  получить 4 корня. Полное решение и ответ в конце урока.

Перейдём к обширной группе функций, у которых есть точки разрыва:

Пример 6

Найти интервалы знакопостоянства функции.

Решение: вот здесь начинает в полную силу работать пункт №1 алгоритма:

1) Функция определена на всей числовой прямой, кроме точки , которая обращает знаменатель в ноль.

2) Находим точки пресечения графика с осью  (нули функции):

Знаменатель нулевым быть не может, поэтому приравниваем к нулю числитель и решаем уравнение счастливого первоклассника:

3) Откладываем на оси абсцисс ВСЕ найденные точки, при этом выкалываем точку , так как она не входит  в область определения функции:
На оси OX необходимо отложить ВСЕ точки
Определим знаки функции на полученных интервалах:

В результате:
Находимо интервалы знакопостоянства, точка разрыва не меняет алгоритма
Ответ:
, если ;
, если .

Чем отличается данный пример от всех предыдущих? Да ничем особенным.

Напоминаю, что практически так же решается ряд смежных задач, например:

Решить неравенство
Ответ:

Решить неравенство
Ответ:

Найти область определения функции
Ответ:

И т.д.

Короткое разминочное задание для самостоятельного решения:

Пример 7

Найти интервалы знакопостоянства функции.

Кстати, подобные вещи вполне реально решить мысленно! Попытайтесь найти интервалы знакопостоянства «в уме», тем более, вы ничем не рискуете – в конце урока есть готовый образец.

Рассмотрим более навороченные дробно-рациональные функции:

Пример 8

Найти интервалы знакопостоянства функции.

Решение: далее пункты алгоритма нумеровать не будем.

Находим область определения функции. Проверим, обращается ли знаменатель в ноль:

Перепишем квадратное уравнение в привычном виде:

И для удобства сменим знаки у каждого слагаемого:

!!! Внимание: в САМОЙ ФУНКЦИИ так делать НЕЛЬЗЯ! В ней знак «минус» не пропадает: .

Дискриминант больше нуля, значит, уравнение имеет два действительных корня и в область определения не войдут две точки:

Найдём точки пересечения графика с осью абсцисс: . Нулевым может быть только числитель, поэтому рассматриваем уравнение . Решение можно провести через дискриминант, однако нетрудно заметить, что у нас квадрат разности:

Таким образом, функция обращается в ноль в единственной точке:

Используя уже наработанный алгоритм, определим знаки функции на полученных интервалах:
Интервалы знакопостоянства дробно-рациональной функции
Ответ:
, если ;
, если .

Как выглядит график функции, знают немногие, но совершенно точно можно сказать, что на интервалах  он расположен ВЫШЕ оси , а на интервалах  – НИЖЕ данной оси. В точке  график, кстати, только касается её.

Пример 9

Найти интервалы знакопостоянства функции.

Это пример для самостоятельного решения.

Заключительные примеры посвящены функциям, в которые входит натуральный логарифм:

Пример 10

Найти интервалы знакопостоянства функции.

Просто и со вкусом.

Решение: функция определена и непрерывна на интервале . Найдём  точки пересечения графика с осью абсцисс:

Нулю может быть равен только числитель:

Согласно определению логарифма (которое нужно бы уже хорошо усвоить):

Отметим найденные точки на числовой прямой:
Анализ функции с корнем и логарифмом
На промежутке  функция не определена вообще. Об этом можно сделать пометку на чертеже либо просто оставить полуинтервал без внимания. Я обычно не ставлю никаких знаков.

Определим знаки на интервалах, которые входят в область определения функции:

Таким образом:
В область определения не входит целый промежуток, там нельзя определить знак функции
Ответ:
, если ;
, если .

На практике под логарифмом часто находится квадратный дву- или трёхчлен. Пожалуйста, ВНИМАТЕЛЬНО изучите оставшиеся примеры, в которых метод интервалов используется ДВАЖДЫ: первый раз для нахождения области определения, а второй раз для нахождения интервалов знакопостоянства.

Пример 11

Найти интервалы знакопостоянства функции.

Решение: сначала найдём область определения функции. Выражение под знаком логарифма должно быть положительным:

Квадратичное неравенство решим методом интервалов. Проверим, существуют ли действительные корни соответствующего уравнения:

Да, уравнение имеет два действительных перца. Не нужно удивляться, что дискриминант получился «плохой», это довольно распространённый инцидент в ходе исследовании функций. Невозмутимо находим корни:

Откладываем найденные точки на числовой прямой. Их следует выколоть, поскольку неравенство строгое. Далее стандартно из каждого интервала выбираем наиболее простую точку, и определяем знаки функции  на полученных интервалах:
Находим область определения функции методом интервалов
Таким образом, область определения:

Что теперь? Теперь ЗАБЫВАЕМ про найденные знаки и интервалы знакопостоянства. Самый важный факт состоит в том, что отрезок   не входит в область определения функции .

На втором шаге находим точки пересечения графика с осью абсцисс (нули функции):

Решаем ещё одно квадратное уравнение:

Снова используем метод интервалов. Откладываем на числовой прямой ВСЕ найдённые ранее точки:
Всё, что накоплено за годы долгого труда
Тесновато получилось, но что делать, зато масштаб выдержан.

Определяем знаки функции на интервалах, при этом не забываем, что отрезок посередине не входит в область определения, и возиться с ним не надо! Но от этого, увы, не легче, так как подстановка будет брутальной. Придётся тыкать по клавишам калькулятора:

Таким образом:
Находим интервалы знакопостоянства функции тем же методом интервалов
Ответ:
, если ;
, если .

Что можно сказать о графике функции ? На отрезке  его не существует вообще, на крайних интервалах он расположен выше оси , на маленьких интервалах – ниже данной оси, точки пересечения с осью: .

Пример 12

Найти интервалы знакопостоянства функции.

Это пример для самостоятельного изучения. На первом шаге решение можно ускорить – неравенство  значительно выгоднее решить аналитически, нежели использовать метод интервалов. Данный способ подробно рассмотрен на уроке Область определения функции.

Вот, пожалуй, и все основные задания по теме, которые встречаются на практике в ходе полного исследования функции. Хочется привести примеры сложнее, но они будут в известной степени надуманы.

Желаю успехов!

Решения и ответы:

Пример 3: Решение:
1) Функция определена на всей числовой прямой.
2) Найдём нули функции:

Таким образом: .
3) Определим знаки функции методом интервалов:

Ответ:
, если ;
, если .

Пример 5: Решение:
1) Функция определена на всей числовой прямой
2) Найдём нули функции:

Проведём замену:

3) Выполним чертёж и определим знаки функции на найденных интервалах:

Ответ:
, если ;
, если .

Пример 7: Решение:
1) Функция определена на всей числовой прямой, кроме точки .
2) Найдём нули функции:

3) Определим знаки функции на полученных интервалах:

Ответ:
, если ;
, если .

Пример 9: Решение: точки  не входят в область определения функции.
График функции не пересекает ось , т.к.
Методом интервалов определим знаки функции:

Ответ:
, если ;
, если .

Пример 12: Решение: найдём область определения:

Таким образом,
Найдём точки пересечения графика с осью абсцисс:

Определим знаки функции на полученных интервалах:

Ответ:
, если ;
, если .

Автор: Емелин Александр


Высшая математика для заочников и не только >>>

(Переход на главную страницу)

В стиральной машине много пены что делать


Значительная доля материала, касающегося производных и исследования функций, традиционно относится к школьной программе, и данная статья не является исключением из правила. Сегодня мы потренируемся в нахождении нулей и интервалов знакопостоянства функции, а также подробно разберём метод интервалов, который можно сравнить с надёжной арматурой в стенах рассматриваемой темы. Если же проект вашего здания находится на стадии котлована, пожалуйста, начните с вводного урока о графиках функций. Кроме того, желательно ознакомиться со статьями Область определения функции, Асимптоты графика, и, по существу, информация этой странички – логическое продолжение. Материал, естественно, будет полезен и старшеклассникам.

Открываем карты:

Что такое нули функции и что такое интервалы знакопостоянства функции?

Рассмотрим некоторую функцию .

1) Точки, в которых график  пересекает ось , называют нулями функции. Чтобы найти нули функции нужно решить уравнение , то есть найти те значения «икс», при которых функция обращается в ноль. В следующем условном примере нули функции  обозначены красными точками:
Нули функции и интервалы знакопостоянства функции
Очевидно, что . Заметьте, что точка  не является нулём функции, поскольку не входит в её область определения.

2) Интервал знакопостоянства – это интервал, в каждой точке которого функция положительна либо отрицательна.

В нашем случае функция положительна на интервалах , то есть для любого значения «икс» любого из перечисленных интервалов справедливо строгое неравенство . Или совсем просто – график функции на таких интервалах расположен ВЫШЕ оси абсцисс.

На интервалах  функция отрицательна, то есть любому значению «икс», принадлежащему этим интервалам соответствует строгое неравенство , и график функции расположен НИЖЕ оси .

Компактная запись перечисленных фактов выглядит так:
, если ;
, если .
Строки можно переставить местами, это не имеет принципиального значения, лично я привык сначала указывать интервалы, на которых функция положительна.

Что можно сказать об интервале ? Только то, что функция не определена на данном интервале, и, разумеется, о знакопостоянстве речи не идёт вообще.

Примечание: в математике более широким является термин «промежуток», который включает в себя не только интервал, но и полуинтервал либо отрезок. Полуинтервалы и отрезки знакопостоянства часто встречаются у кусочно-заданных функций. В частности, если на вышеуказанном чертеже «закрасить» точку с абсциссой , то получим промежуток (в данном случае – полуинтервал) знакопостоянства . Однако далее будут рассматриваться «обычные» функции, обладающие только интервалами знакопостоянства, поэтому в термине «промежуток знакопостоянства» нет особой нужды.

Как найти интервалы знакопостоянства функции?

Алгоритм метода интервалов прост и бесхитростен:

1) Находим область определения функции.

2) Находим нули функции (точки пересечения графика с осью абсцисс).

3) В большинстве заданий потребуется чертёж. Чертим ось  и откладываем на ней точки разрыва (если они есть), а также нули функции (если они есть). Определяем знаки функции на интервалах, которые входят в область определения.

Пункты можете законспектировать, впрочем, алгоритм очень быстро запомнит даже полный чайник. Тут всё прозрачно и логично.

Начнём с распространённой квадратичной функции:

Пример 1

Найти интервалы знакопостоянства функции.

Решение:

1) Функция определена и непрерывна на всей числовой прямой. Таким образом, точки разрыва и «нехорошие» промежутки отсутствуют.

2) Найдём нули функции. Для этого нужно решить уравнение . В данном случае:

Дискриминант положителен, значит, уравнение имеет два действительных корня:

3) Откладываем все найденные точки на числовой оси:
Нули функции располагаются на оси OX
В статье Область определения функции я выполнял подобные чертежи схематически, но сейчас для бОльшей наглядности изложения буду их масштабировать (за исключением клинических случаев). На том же уроке мы узнали, как выяснить знаки функции на интервалах – можно проанализировать расположение параболы. В данном случае ветви параболы направлены вверх, следовательно, на интервалах  функция будет положительна: . Попа параболы сидит на интервале  ниже оси абсцисс, и функция здесь отрицательна: .

Хорошо, параболу многие читатели представляют. Но что делать, если функция более сложная? Например, .  Заметная часть аудитории уже затруднится сказать, как принципиально выглядит график данной функции. И это, так скажем, ещё только минимальное усложнение.

Однако и в простых и в сложных случаях работает универсальный способ:

Рассмотрим функцию  непрерывную на некотором интервале , график которой не пересекает ось  на этом интервале. Тогда:

– если функция  положительна в какой-либо точке интервала , то она положительна и ВО ВСЕХ точках данного интервала;

– если функция  отрицательна в какой-либо точке интервала , то она отрицательна и ВО ВСЕХ точках данного интервала.

Включите немного воображения: если на интервале нет точек разрыва, и график не пересекает ось абсцисс, то он не может по мановению волшебной палочки перескочить из нижней полуплоскости в верхнюю полуплоскость (или наоборот). Поэтому знак функции на таком интервале легко определить по одной-единственной точке.

Проведём небольшой эксперимент. Представьте, что вы совсем не знаете, как выглядит график функции  и вам необходимо найти её интервалы знакопостоянства (кстати, если действительно не знаете, таки начертите многострадальную примадонну =)).

1) Берём произвольную точку интервала . С вычислительной точки зрения проще всего взять . Подставляем её в нашу функцию:

Следовательно, функция положительна и в каждой точке интервала .

2) Берём произвольную точку интервала , здесь по удобству вне конкуренции ноль. Снова выполняем подстановку:

А, значит, функция отрицательна и в каждой точке интервала .

3) И, наконец, обрабатываем наиболее простую точку интервала :

Поэтому функция положительна в каждой точке интервала .

Выполненные подстановки, вычисления почти всегда нетрудно выполнить устно, но в крайнем случае существует и черновик.

Фиксируем полученные результаты на числовой оси:
Интервалы знакопостоянства функции
Да, вы не имеете никаких представлений о параболе, но совершенно точно можете сказать, что на интервалах  график функции   расположен ВЫШЕ оси , а на интервале  – НИЖЕ данной оси.

Ответ:
, если ;
, если .

Точно так же решается целый спектр задач-«сателлитов», вот некоторые из них:

Решить квадратичное неравенство .

Проводим аналогичные действия и даём ответ .

Решить квадратичное неравенство .

Проводим аналогичные действия и даём ответ .

Найти область определения функции .

Проводим аналогичные действия, даём ответ .

И т.п.

Метод интервалов работает в самых примитивных случаях, например, для функции . Здесь прямая пересекает ось абсцисс в точке , при этом слева от данной точки  (график ниже оси ), а справа  (график выше оси ). Тем не менее, для тех, кто в танке, задача разрешима и методом интервалов.

Может ли функция быть положительно или отрицательной на всей числовой прямой? Конечно, в статье Область определения функции мы рассмотрели типовые примеры. В частности выяснили, что  (парабола, полностью лежащая в верхней полуплоскости). Метод интервалов проходит и тут! Рассматриваем единственный интервал , берём из него самую удобную точку  и выполняем подстановку: . А значит, функция положительна и в каждой точке интервала .

Перейдём к кубическим многочленам:

Пример 2

Найти интервалы знакопостоянства функции.

Решение: снова придерживаемся алгоритма:

1) Функция определена на всей числовой прямой.

2) Найдём нули функции, то есть решим уравнение . Для этого выполним разложение на множители:

Таким образом, нули функции: .

3) Откладываем найденные значения на числовой прямой:
Откладываем на оси абсцисс нули функции
Теперь в каждом из четырёх полученных интервалов берём наиболее простую точку и находим значения функции в данных точках:

Таким образом:
Определяем знаки функции методом интервалов
Ответ:
, если ;
, если .

Вы можете не знать, как выглядит график функции , но уже, по крайне мере, понятно, где он выше оси , а где ниже.

Кубическая функция настолько распространена, что не удержусь от полного чертежа «молнии»:
График кубического многочлена

Казалось бы, решение можно упростить: взять левый интервал , выяснить, что на нём функция отрицательна, а дальше знаки будут чередоваться – «плюс», «минус», «плюс». Знакочередование бывает часто, но…

ЗНАКИ ЧЕРЕДУЮТСЯ ДАЛЕКО НЕ ВСЕГДА

Поэтому не ленимся – ТЕРПЕЛИВО рассматриваем КАЖДЫЙ интервал: из КАЖДОГО  интервала берём наиболее выгодную точку и выясняем знак функции в данной точке.

Вот простой пример, когда интервала два, но знакочередования нет: . Экспонента всегда положительна , квадрат неотрицателен , поэтому вся функция неотрицательна: , очевидно, достигая нуля в единственной точке . Такого решения будет вполне достаточно. Не обязательно чертить координатную ось! Обратите внимание, здесь есть тонкость при записи ответа:
, если .
То есть, функция положительна везде, кроме точки ноль.

Но формально можно использовать метод интервалов, который приведёт нас к такому же результату:
Функция неотрицательна на всей числовой прямой
Если честно, не помню, как выглядит чертёж, однако совершенно точно можно сказать, что график данной функции лежит в верхней полуплоскости и касается оси абсцисс в точке .

Или парабола, касающаяся оси, например: . Такая же история. Кстати, если вы внимательно изучили геометрические преобразования графиков, то сразу поймёте, как расположена данная парабола.

Следует отметить, что ситуация касания графика оси не единственна, в ряде случаев  функция не меняет знак при переходе через в стиральной машине много пены что делать точку разрыва. Хороший пример встретился в статье Непрерывность функции: .

Пример 3

Найти интервалы знакопостоянства функции.

Это пример для самостоятельного решения. После того, как определите знаки на интервалах, попытайтесь представить, как выглядит данная «молния». Примерный образец чистового оформления задания в конце урока.

Функции с многочленами встречаются очень часто, поэтому имеет смысл рассмотреть ещё пару экземпляров:

Пример 4

Найти интервалы знакопостоянства функции.

Решение:

1) Функция определена на всей числовой прямой.

2) Находим нули функции:

Таким образом, нули функции: .

3) Откладываем данные значения на оси абсцисс:
Нули многочлена 4-ой степени
Определим знаки функции на полученных интервалах:

Таким образом:
Знаки на интервалах не обязаны чередоваться
Ответ:
, если ;
, если .

Читатели с высоким и средним уровнем подготовки могут укоротить процесс решения, используя чётность/нечётность функций, чайникам же рекомендую не торопиться и тщательно прорабатывать каждый пункт решения.

Функция-многочлен 4-й степени тоже достойна полного графика:
График многочлена четвёртой степени

Собрат для самостоятельного решения:

Пример 5

Найти интервалы знакопостоянства функции.

В ходе выполнения задания потребуется решить так называемое биквадратное уравнение, которое также рассматривается в школьном курсе математики. В данном примере необходимо провести замену , разобраться с уравнением , найти корни  и на финише из равенств  получить 4 корня. Полное решение и ответ в конце урока.

Перейдём к обширной группе функций, у которых есть точки разрыва:

Пример 6

Найти интервалы знакопостоянства функции.

Решение: вот здесь начинает в полную силу работать пункт №1 алгоритма:

1) Функция определена на всей числовой прямой, кроме точки , которая обращает знаменатель в ноль.

2) Находим точки пресечения графика с осью  (нули функции):

Знаменатель нулевым быть не может, поэтому приравниваем к нулю числитель и решаем уравнение счастливого первоклассника:

3) Откладываем на оси абсцисс ВСЕ найденные точки, при этом выкалываем точку , так как она не входит  в область определения функции:
На оси OX необходимо отложить ВСЕ точки
Определим знаки функции на полученных интервалах:

В результате:
Находимо интервалы знакопостоянства, точка разрыва не меняет алгоритма
Ответ:
, если ;
, если .

Чем отличается данный пример от всех предыдущих? Да ничем особенным.

Напоминаю, что практически так же решается ряд смежных задач, например:

Решить неравенство
Ответ:

Решить неравенство
Ответ:

Найти область определения функции
Ответ:

И т.д.

Короткое разминочное задание для самостоятельного решения:

Пример 7

Найти интервалы знакопостоянства функции.

Кстати, подобные вещи вполне реально решить мысленно! Попытайтесь найти интервалы знакопостоянства «в уме», тем более, вы ничем не рискуете – в конце урока есть готовый образец.

Рассмотрим более навороченные дробно-рациональные функции:

Пример 8

Найти интервалы знакопостоянства функции.

Решение: далее пункты алгоритма нумеровать не будем.

Находим область определения функции. Проверим, обращается ли знаменатель в ноль:

Перепишем квадратное уравнение в привычном виде:

И для удобства сменим знаки у каждого слагаемого:

!!! Внимание: в САМОЙ ФУНКЦИИ так делать НЕЛЬЗЯ! В ней знак «минус» не пропадает: .

Дискриминант больше нуля, значит, уравнение имеет два действительных корня и в область определения не войдут две точки:

Найдём точки пересечения графика с осью абсцисс: . Нулевым может быть только числитель, поэтому рассматриваем уравнение . Решение можно провести через дискриминант, однако нетрудно заметить, что у нас квадрат разности:

Таким образом, функция обращается в ноль в единственной точке:

Используя уже наработанный алгоритм, определим знаки функции на полученных интервалах:
Интервалы знакопостоянства дробно-рациональной функции
Ответ:
, если ;
, если .

Как выглядит график функции, знают немногие, но совершенно точно можно сказать, что на интервалах  он расположен ВЫШЕ оси , а на интервалах  – НИЖЕ данной оси. В точке  график, кстати, только касается её.

Пример 9

Найти интервалы знакопостоянства функции.

Это пример для самостоятельного решения.

Заключительные примеры посвящены функциям, в которые входит натуральный логарифм:

Пример 10

Найти интервалы знакопостоянства функции.

Просто и со вкусом.

Решение: функция определена и непрерывна на интервале . Найдём  точки пересечения графика с осью абсцисс:

Нулю может быть равен только числитель:

Согласно определению логарифма (которое нужно бы уже хорошо усвоить):

Отметим найденные точки на числовой прямой:
Анализ функции с корнем и логарифмом
На промежутке  функция не определена вообще. Об этом можно сделать пометку на чертеже либо просто оставить полуинтервал без внимания. Я обычно не ставлю никаких знаков.

Определим знаки на интервалах, которые входят в область определения функции:

Таким образом:
В область определения не входит целый промежуток, там нельзя определить знак функции
Ответ:
, если ;
, если .

На практике под логарифмом часто находится квадратный дву- или трёхчлен. Пожалуйста, ВНИМАТЕЛЬНО изучите оставшиеся примеры, в которых метод интервалов используется ДВАЖДЫ: первый раз для нахождения области определения, а второй раз для нахождения интервалов знакопостоянства.

Пример 11

Найти интервалы знакопостоянства функции.

Решение: сначала найдём область определения функции. Выражение под знаком логарифма должно быть положительным:

Квадратичное неравенство решим методом интервалов. Проверим, существуют ли действительные корни соответствующего уравнения:

Да, уравнение имеет два действительных перца. Не нужно удивляться, что дискриминант получился «плохой», это довольно распространённый инцидент в ходе исследовании функций. Невозмутимо находим корни:

Откладываем найденные точки на числовой прямой. Их следует выколоть, поскольку неравенство строгое. Далее стандартно из каждого интервала выбираем наиболее простую точку, и определяем знаки функции  на полученных интервалах:
Находим область определения функции методом интервалов
Таким образом, область определения:

Что теперь? Теперь ЗАБЫВАЕМ про найденные знаки и интервалы знакопостоянства. Самый важный факт состоит в том, что отрезок   не входит в область определения функции .

На втором шаге находим точки пересечения графика с осью абсцисс (нули функции):

Решаем ещё одно квадратное уравнение:

Снова используем метод интервалов. Откладываем на числовой прямой ВСЕ найдённые ранее точки:
Всё, что накоплено за годы долгого труда
Тесновато получилось, но что делать, зато масштаб выдержан.

Определяем знаки функции на интервалах, при этом не забываем, что отрезок посередине не входит в область определения, и возиться с ним не надо! Но от этого, увы, не легче, так как подстановка будет брутальной. Придётся тыкать по клавишам калькулятора:

Таким образом:
Находим интервалы знакопостоянства функции тем же методом интервалов
Ответ:
, если ;
, если .

Что можно сказать о графике функции ? На отрезке  его не существует вообще, на крайних интервалах он расположен выше оси , на маленьких интервалах – ниже данной оси, точки пересечения с осью: .

Пример 12

Найти интервалы знакопостоянства функции.

Это пример для самостоятельного изучения. На первом шаге решение можно ускорить – неравенство  значительно выгоднее решить аналитически, нежели использовать метод интервалов. Данный способ подробно рассмотрен на уроке Область определения функции.

Вот, пожалуй, и все основные задания по теме, которые встречаются на практике в ходе полного исследования функции. Хочется привести примеры сложнее, но они будут в известной степени надуманы.

Желаю успехов!

Решения и ответы:

Пример 3: Решение:
1) Функция определена на всей числовой прямой.
2) Найдём нули функции:

Таким образом: .
3) Определим знаки функции методом интервалов:

Ответ:
, если ;
, если .

Пример 5: Решение:
1) Функция определена на всей числовой прямой
2) Найдём нули функции:

Проведём замену:

3) Выполним чертёж и определим знаки функции на найденных интервалах:

Ответ:
, если ;
, если .

Пример 7: Решение:
1) Функция определена на всей числовой прямой, кроме точки .
2) Найдём нули функции:

3) Определим знаки функции на полученных интервалах:

Ответ:
, если ;
, если .

Пример 9: Решение: точки  не входят в область определения функции.
График функции не пересекает ось , т.к.
Методом интервалов определим знаки функции:

Ответ:
, если ;
, если .

Пример 12: Решение: найдём область определения:

Таким образом,
Найдём точки пересечения графика с осью абсцисс:

Определим знаки функции на полученных интервалах:

Ответ:
, если ;
, если .

Автор: Емелин Александр


Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Собака рычит на хозяев почему и что делать

Однажды, загружая очередную стирку, вы вдруг замечаете: из вашей стиральной машины пахнет сыростью и затхлостью, а на резиновом уплотнительном кольце появились черные пятна. Это не что иное, как обычная плесень, и убрать ее непросто. Хорошо, если эта напасть еще не.

В стиральной машине много пены что делать

Что такое стиральные машины с прямым приводом? Техника выбора

В стиральной машине много пены что делать

Как правильно стирать обувь в стиральной машине и можно ли

В стиральной машине много пены что делать

Плесень в стиральной машине: как очистить и предотвратить

В стиральной машине много пены что делать

«Сонник Ванна приснилась, к чему снится во сне Ванна»

В стиральной машине много пены что делать

Ошибка E15 у посудомоечной машины Bosch - как исправить

В стиральной машине много пены что делать

Инструкция к стиральной машине Hotpoint-Ariston AQS73F 09

В стиральной машине много пены что делать

Стиральные машины Bosch - отзывы

В стиральной машине много пены что делать

23 поступка, которые говорят громче, чем «Я тебя люблю» Creu

В стиральной машине много пены что делать

Karpatka, Сахарная глазурь-помадка

В стиральной машине много пены что делать

Minecraft Boats creations

В стиральной машине много пены что делать

База отдыха «Веселый Маныч» Базы отдыха Ростовской